INTRODUCTION

Glaucoma remains one of the world’s leading causes of acquired blindness. An estimated 67 million have the disease, 3 million of those in United States, of which roughly half are undiagnosed.

Pakistan is the sixth most populous country in the world and is situated in the world health organization (WHO) eastern Mediterranean region. Estimates for the number of blind people by WHO (EMR) region in 2000 show 5 people per million blind in eastern Mediterranean region, and glaucoma is the second leading cause after cataract. The national blindness survey in Pakistan shows that after cataract and sequelae of cataract surgery, glaucoma is the next most important cause of treatable blindness, accounting for 7.1% of total blindness. This is lower than 11% quoted for WHO eastern Mediterranean region, sub-region D, which includes Pakistan.

A survey in India of adults age ≥50 years, which used a blindness definition of <6/60, showed that 5.8% of blindness was due to glaucoma. The earlier study in Pakistan estimated the number of people blind from glaucoma to be 80 thousands, which was similar to result from Pakistan National survey i.e. 89,000.

Currently glaucoma is defined as disturbance in structural or functional integrity of optic nerve, leading to visual field defects over time. The development of optic nerve damage leading to visual field loss or optic disc findings, is more likely to be associated with high intraocular pressure, although IOP is not the only risk factor for glaucomatous nerve damage.

A number of studies have attempted to identify the risk factors associated with development of elevated IOP. Several studies in western population have suggested that age is related positively with IOP. Moreover, some epidemiological studies examined relationship between BMI and IOP. These studies show that high BMI is independent risk factor for IOP when considered with age and hypertension.

The combined evidence from several studies now suggests the high level of BMI is strongly associated with risk of increased IOP. In our knowledge no work has been done till date on this subject in our region.

We conducted this study to see any correlation between BMI and IOP in adult population.

MATERIAL AND METHODS

Patients attending Eye OPD of Khyber Teaching Hospital during the study period, were divided into 7 groups according to age: <25 years, 25-35, 36-45, 46-55, 56-65, 66-75 and >75 years of age. All of them were examined after informed consent.
Danish Zafar, et al.

consent. Information was collected on a structured proforma. Intraocular pressure was checked with Goldmann Tonometer. Height was measured in meters. Weight was measured in Kilogram. Corneal Pachymetry was done to adjust the intraocular pressure. 520 μm was taken normal and pressures were adjusted accordingly. Body mass index was calculated. SPSS version 10 was used for data analysis. Mean value was calculated for variables like age, IOP, BP and BMI. Frequencies were calculated for sex, age, mean IOP and BMI. Pearson correlation was calculated for BMI and intraocular pressure. Pearson correlation was also calculated for age and IOP. P value <0.05 was taken as significant.

RESULTS

Three hundred patients were examined, age ranging from 20-80 years, among which 158 (52.7%) were males and 142 (47.3%) were females, with mean age of 42.23±15.43 years. (Table 1)

Table 1: Age and sex distribution of patients.

<table>
<thead>
<tr>
<th>Age* sex Crosstabulation</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-34%female</td>
<td>18</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>35-44%female</td>
<td>32</td>
<td>27</td>
<td>59</td>
</tr>
<tr>
<td>45-54%female</td>
<td>35</td>
<td>33</td>
<td>68</td>
</tr>
<tr>
<td>55-64%female</td>
<td>27</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>65-74%female</td>
<td>7</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>>74%female</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>158</td>
<td>142</td>
<td>300</td>
</tr>
</tbody>
</table>

Mean BMI was 24.8 Kg/m², ranging from 15->30 Kg/m². Gender distribution of BMI is given in Table 2.

Table 2: Gender distribution of BMI.

<table>
<thead>
<tr>
<th>BMI</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15-20</td>
<td>28</td>
<td>18</td>
<td>46</td>
</tr>
<tr>
<td>21-25</td>
<td>72</td>
<td>40</td>
<td>112</td>
</tr>
<tr>
<td>26-30</td>
<td>42</td>
<td>50</td>
<td>92</td>
</tr>
<tr>
<td>31-35</td>
<td>14</td>
<td>26</td>
<td>40</td>
</tr>
<tr>
<td>36-40</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>158</td>
<td>142</td>
<td>300</td>
</tr>
</tbody>
</table>

Mean IOP of both the eyes was calculated, and it was 16.29±4.16 mmHg. IOP was calculated in groups for male and female separately. Most of patients (94 male, 80 females) were in pressure range 16-20 mmHg. (Table 3)

Table 3: Gender distribution of IOP.

<table>
<thead>
<tr>
<th>IOP</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><15 mm Hg</td>
<td>54</td>
<td>44</td>
<td>98</td>
</tr>
<tr>
<td>16-20 mm Hg</td>
<td>94</td>
<td>80</td>
<td>174</td>
</tr>
<tr>
<td>21-30 mm Hg</td>
<td>8</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>>30 mm Hg</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>158</td>
<td>142</td>
<td>300</td>
</tr>
</tbody>
</table>

Mean IOP was correlated to IOP which was found to be positive with p-value <0.05. (Figure)

DISCUSSION

This study evaluated BMI as a risk factors for increased IOP. This study showed positive correlation of BMI with IOP.

The mean IOP, using Goldman Tonometer, was 16.29±4.16 mmHg in this study, which was slightly higher than the study done in Japan using non-contact tonometry but similar to other surveys done using appplanation tonometry; the values obtained were between 14-17mmHg.

Many cross-sectional studies in western population have shown a positive correlation between IOP and age. Regarding age related changes
in IOP, Shiose and Kawase15 reported a negative correlation between IOP and age in Japanese population, but Qureshi17 reported that IOP progressively increased with age in both sexes in Pakistani population.

Although these countries belong to same oriental cultures, there are some differences in IOP relationship with age and sex between Japan and Pakistan. Qureshi17 reported that IOP progressively increased with age in both sexes in Pakistani population but more markedly in females. While Shiose15 showed that mean IOP was higher in males than females. Qureshi17 reported that the mean IOP in female was higher than males especially after age of 40 years.

With aging, the increased BMI was noted until 60 years of age after which it showed a tendency to decrease.

According to various epidemiological studies there are twice as many obese people (more than 10% over their ideal weight) among elderly population in western population than oriental population. This fact may have influenced the rising affect of IOP with aging in western culture.18

The mean BMI in our study was 24.8 Kg/m2. The prevalence of BMI \textgreater 26 was more in females than in males. According to the current Definition for Obesity in the Asia-Pacific region, the adults are over weight at BMI \textgreater 23 and obesity at BMI \textgreater 25,19 but Papas et al. used BMI values of \textgreater 25 and \textgreater 30 to define over weight and obesity in Pakistani population respectively.20 which also showed that obesity prevalence is more in females. BMI was found positively correlated to IOP in this study. The p-value of in this study is highly significant. It is seen generally that with increasing age, BMI increases especially in female, so both factors can affect the IOP put together.

The mechanism of effect of BMI on IOP may be due to excess intra-orbital fat tissue, an increase in episcleral venous pressure and consequent decrease in outflow facility. Obesity increases blood viscosity through increasing red cell count, haemoglobin, and hematocrit, thus increasing outflow resistance of episcleral vein. Further obesity is also risk factor for diabetes and hypertension which also have effect on IOP. The outcome of this study confirms the importance of weight control in preventing increased in IOP.

\textbf{CONCLUSION}

Increase in BMI is strongly associated with increased IOP.

\textbf{REFERENCES}

Address for Correspondence:
Dr. Danish Zafar
Senior Registrar
NIMS Medical College
Murree road Abbottabad, Pakistan
E-mail: deezafar@yahoo.com