INTRODUCTION

Spinal fractures are not uncommon occurrence. Spinal injuries occur predominantly in young males and male to female ratio is four to one. Frequency of vertebral fractures increases with age due to osteoporosis and decreasing bone density. Neurological deficit occurs in 26% of these injuries. Traumatic spinal cord injury is estimated to be 29-50 cases per million populations per year world wide. The international frequency of spinal fractures is difficult to determine due to differences in data collection and reporting among countries. In the trauma patients thoracic and lumbar fractures occur in 15000 individuals annually in United States, and account for 30-60% of all spinal injuries. In Pakistan significant number of people suffers from spinal injuries every year.

Causes of spinal injuries are motor vehicle accidents, fall from height, hit by a heavy falling object, gunshot wounds, sports accidents, industrial accidents and agriculture accidents.

There are different types of management of spinal injuries including operative and non-operative. Non-operative treatment can be employed in patients with less vertebral body compression using thoracolumbar orthosis and restriction of activities.

Significant development in management of spinal injuries occurred in 20th century. The era of 1940s was remembered for the use of rods, wires, screws, inter body fusion and bone grafting. 1980 produced proliferation of modern spinal instrumentation system like pedicle screws, rods and multiple hooks.

Surgery is indicated to minimize pain, stabilize spine, correcting and preventing subsequent spinal deformity, early mobilization, reduction of morbidity and improvement in neurological function. Posterior internal fixation with titanium and stainless steal pedicle screws and rods is becoming increasingly popular which are longitudinally anchored to the spine. In posterior transverse fusion, bone grafts are placed. In posterior interbody fusion technique, decompression is done through a standard posterior laminectomy.

The objective of this study is to determine the effectiveness of posterior spinal fixation in main-
taining the stability and correction of deformity of thoracolumbar spine.

MATERIAL AND METHODS

Seventy six patients with thoracolumbar spine fracture were managed surgically in Orthopedic Department of Postgraduate Medical Institute, Hayatabad Medical Complex Peshawar from December 2003 to November 2007 by posterior spinal fixation with pedicular screws and rods.

Patients with unstable fractures were included in the study while patients with bed sores and unfit for anesthesia were excluded.

All patients with thoracolumbar spinal fracture reporting to Orthopedic Department were admitted and selected according to inclusion and exclusion criteria. The purpose of the study was explained to them; their cooperation sought and written informed consent was taken. After getting informed consent, they were operated by posterior approach and internal fixation was done using polyaxial pedicular screws and rods system made locally from Titanium. On stabilization of their condition post operatively, they were referred to physiotherapy and rehabilitation centre with instructions.

The patients were followed up for a period of 1 year after surgery, and their data were collected.

The data include pain and mobility, deformity, correction of deformity and complications. The pain was recorded using Dennis Pain Scale14 (Figure-1) and mobility (resumption of work) by Dennis Work Scale14 (Figure-2). Radiological evidence of deformity and correction of deformity were evaluated by measuring Cobb angle14, anterior and posterior vertebral heights (AVH & PVH), sagittal index15 and posterior column injury using plain radiographs. The data was analyzed using SPSS version 10, and results presented as frequencies and mean values ± standard deviation in the form of tables. Pair t-test was applied when and where necessary during analyzing the data. The level of significance was chosen as 0.05.

RESULTS

Total seventy six patients were included in the study in which 49 were male and 27 were female. The maximum age was 65, minimum was 20 and average was 32 years. In 36 patients the injury was caused by a road traffic accident, in 28 by a fall from a height and in 12 the patient was hit by a heavy falling object. In twelve patients the fracture was located at T11, in 18 at T12, in 22 at L1, in 20 at L2 and in 4 at L3 vertebra. There were associated distal radius fractures in four patients, radius and ulna fracture in one, distal tibial fractures in five, calcaneal fracture in seven, clavicle in one, humerous in one and pelvic fractures in eight patients.

Denis classification was used in our study. The four major types of fractures were compression fractures 56(73.68%), burst fractures 12(15.78%), flexion-distraction injuries 4(5.26%), and fracture-dislocations 4(5.26%).

The mean kyphosis was 27° preoperatively. Immediately after surgery, the correction of kyphosis averaged was 7° which was the same at final follow up (Figure 3 and 4). The sagittal index of the fractured vertebra ranged from 12° to 36° in the preoperative period (mean: 26°), from 5° to 15° in the immediate postoperative period (mean: 8°) and from 5° to 20° (mean: 12°) at the final evaluation one year after surgery.

Vertebral body height ranged from 6 millimeter (mm) to 13 mm in the preoperative period. Postoperatively the vertebral height ranged from

DENNIS PAIN SCALE

P1 :	No pain
P2 :	Occasional minimal pain; no need for medication
P3 :	Moderate pain, occasionally medications e no interruption of work or activities of daily living
P4 :	Moderate to severe pain, occasionally absent from work; significant changes in activities of daily living
P5 :	Constant, severe pain; chronic pain medications

DENNIS WORK SCALE

W1 :	Return to previous employment (heavy labor) or physically demanding activities
W2 :	Able to return to previous employment (sedentary) or return to heavy labor with restrictions
W3 :	Unable to return to previous employment but works full time at new job
W4 :	Unable to return to full time work
W5 :	No work, completely disabled

Fig 1: Dennis Pain Scale.14

Fig 2: Dennis Work Scale.14
18 to 22 mm (mean: 15mm) which was almost the same as of neighboring vertebra. There was a significant difference between preoperative and immediate postoperative values.

Evaluation of pain according to the Dennis scale showed that 44 (57.9%) patients had no pain one year after surgery, 20 (26.3%) had minimal pain not requiring anti-inflammatory drugs, 10 (13.1%) had moderate pain requiring the occasional use of analgesics, 2 (2.6%) had moderate to severe pain, with occasional loss of work days and significant changes in daily activities (Table 1).

Table 1: Evaluation of post operative pain according to the Dennis Pain Scale. (n= 76)

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Characteristics of pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 (57.9%)</td>
<td>P 1: No pain</td>
</tr>
<tr>
<td>20 (26.3%)</td>
<td>P 2: Minimal pain not requiring analgesics</td>
</tr>
<tr>
<td>10 (13.1%)</td>
<td>P 3: Moderate pain requiring occasional analgesic</td>
</tr>
<tr>
<td>2 (2.6%)</td>
<td>P 4: Moderate to severe pain with occasional loss of work days</td>
</tr>
</tbody>
</table>

Evaluation of the ability to work (mobility) by the Denis scale showed that 40 (52.6%) patients had returned to the job they had held before the fracture, 18 (23.7%) did not return to their previous job but are currently working full time on another job, 8 (10.5%) are working with limitations on a part time basis and 10 (13.1%) are not working (not able to work) (Table 2).

Table 2: Evaluation of post operative ability to work according to the Dennis Work Scale. (n= 76)

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>Characteristics of Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 (52.6%)</td>
<td>W 1: Returned to the job they held before</td>
</tr>
<tr>
<td>18 (23.7%)</td>
<td>W 3: No previous job but working full time another job</td>
</tr>
<tr>
<td>8 (10.5%)</td>
<td>W 4: Working with limitations on a part time basis</td>
</tr>
<tr>
<td>10 (13.1%)</td>
<td>W 5: Not working</td>
</tr>
</tbody>
</table>

There were eleven complications observed in all patients. Infection was observed in eight patients in whom the wound was opened, thorough debridement was done and the wound healed without removing the implants. There was pull out of upper screws from pedicles in one patient, pull out of rod from screws in one patient (figure 5) and deep vein thrombosis (DVT) in another one patient who were treated accordingly. (Table 3)

Table 3: Complications. (n=76)

<table>
<thead>
<tr>
<th>Complications</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>8 (10.5%)</td>
</tr>
<tr>
<td>Screw pull out</td>
<td>1(1.3%)</td>
</tr>
<tr>
<td>Pull out of rods from screw</td>
<td>1(1.3%)</td>
</tr>
<tr>
<td>Deep vein thrombosis (DVT)</td>
<td>1(1.3%)</td>
</tr>
</tbody>
</table>

Fig 3: Preoperative MRI and Post operative X Rays of forty two years old patient with fracture dislocation Of Thoracolumbar Spine with complete transaction of the cord.

Fig 4: Pre and Post operative X Rays of twenty eight years old patient with three months old fracture dislocation of Thoracolumbar Spine with cord transaction.
DISCUSSION

There is no agreed surgical procedure for spinal fracture but pedicular screws and rod fixation is practiced nowadays widely.16-19 Among the pedicular screws the polyaxial are more commonly used.19,20.

Radiological assessment was most markedly observed post operatively. In one study it was shown that post operatively kyphosis improved at an average of 7.5 degrees and at follow-up examination angle of kyphosis was at an average of 6.5 degrees.17 In another study the correction of kyphosis was 98% averaged post operatively18 while in our study correction of kyphosis was 92% averaged. Helton et al22 had observed that the sagittal index of the fractured vertebra improved from 8° to 32° (mean 20°) during the preoperative period to 3° to 25° (mean 14°) in the immediate postoperative period. In our study the sagittal index of the fractured vertebra ranged from 12° to 36° in the preoperative period (mean: 26°), from 5° to 15° in the immediate postoperative period (mean: 8°) and from 5° to 20° (mean: 12°) at the final evaluation one year after surgery. There was a significant difference between preoperative and immediate postoperative values

Denis pain scale showed that 44% patients had no pain and 17% had moderate to severe pain two years after surgery in Helton et al22 study while in our study 57.9% patients had no pain one year after surgery, 2.6% had moderate to severe pain, with occasional loss of work days and significant changes in daily activities.

Employment of the patients are the main concern and most of the patient were anxious wither they will resume their duties or not. In Helton et al22 study 50% patients had returned to the job they held before and 17% were not able to resume their job while in our study 52.6% patients returned to the job they held before the fracture and 13.1% had lost their jobs and was not able to work. Other complications like DVT, pullout of screws and implant failure was almost the same with studies done elsewhere.16-19

In our environment the infection was the most common and dreadful complication which was observed in eight (10.5%) patients while in other studies it was less than that.20,21,22

Starkweather23 observed that decompression combined with posterior spinal fixation by pedicular screws and rods had excellent results in degenerative spondylolisthesis because instrumentation increases the intervertebral distance to pre-disease height, allows complete and longer lasting spinal root decompression and maintains lordosis of the lumbar spine.20

CONCLUSION

Advances in posterior spinal fixation techniques allow patients to spend less time in the hospital, experience less pain, early resumption to pre disease state of work, and has quicker recovery time. In our society a dependent person is more than a diseased itself and if these patients are not treated properly, they will not only loose their employment but will be a permanent burden and nuisance for their family. Fixation of the spine can make the nursing care easier in paraplegic patients because these patients require vigilant nursing care to ensure optimal recovery.

REFERENCES

2 Vaccaro AR, KimDH, BrodkeDS, Harris M, Chapman JR, Schildauer T, Routt ML, Sasso RC. Diagnosis and management of thoracolumbar...
Management of thoracolumbar spinal fractures

20 Afzal S, Mir MR, Halwai MA, Shabir A. Steffee (VSP) instrumentation for the surgical management of thoracolumbar spinal fractures.(a study of 20 cases). JK-Practitioner 2002; 94: 227-30

Address for Correspondence:
Dr Mohammad Inam
House-5, Street-1, Sector K-2
Phase-3, Hayatabad
Peshawar, Pakistan
E-mail: dr_mohammadinam@yahoo.co.uk